| 
                                                 Maths Triangles class 8th 
(Q.1)  By which
  congruency property, the two triangles connected by the following figure are
  congruent.  |  | 
( 1 mark )  | 
(a) SSA property
(b) SSS property
(c) AAS property
(d) ASA property
(b) SSS property
(c) AAS property
(d) ASA property
| 
(Q.2)  If a, b and c are
  the sides of a triangle, then
   |  | 
( 1 mark )  | 
(a) a – b > c
(b) c > a + b
(c) c = a + b
(d) b < c + a
(b) c > a + b
(c) c = a + b
(d) b < c + a
| 
 (Q.3)  In the adjoining figure, CD
  is parallel to AB, then the value of  y will be |  | 
( 1 mark )  | 
(a) 300.
(b) 600.
(c) 900.
(d) 1200.
(b) 600.
(c) 900.
(d) 1200.
| 
(Q.4)  The word CPCT
  stands for  |  | 
( 1 mark )  | 
(a) corresponding parts of congruent
triangles.
(b) corresponding pair of congruent triangles.
(c) congruent part of corresponding triangles.
(d) congruent pair of corresponding triangles
(b) corresponding pair of congruent triangles.
(c) congruent part of corresponding triangles.
(d) congruent pair of corresponding triangles
| 
(Q.5)  Angles opposite
  to equal sides of an isosceles triangle are
   |  | 
( 1 mark )  | 
(a) complementary.
(b) supplementary.
(c) equal.
(d) not equal
(b) supplementary.
(c) equal.
(d) not equal
| 
(Q.6)  If the altitudes
  of a triangle are equal, then the triangle will be  |  | 
( 1 mark )  | 
(a) a scalene triangle.
(b) an isosceles triangle.
(c) an equilateral triangle.
(d) a right-angled triangle.
(b) an isosceles triangle.
(c) an equilateral triangle.
(d) a right-angled triangle.
| 
(Q.6)  In the given
  figure, BD and CE are two altitudes of a triangle ABC, such that BD = CE, then the triangle ABC will be |  | 
( 1 mark )  | 
(a) a right- angled triangle.
(b) a scalene triangle.
(c) an equilateral triangle.
(d) an isosceles triangle.
(b) a scalene triangle.
(c) an equilateral triangle.
(d) an isosceles triangle.
| 
(Q.7)  If the
  measurements of three angles of a triangle are x, 2x and 3x, then the value
  of x will be  |  | 
( 1 mark )  | 
(a) 300.
(b) 400.
(c) 500.
(d) 550.
(b) 400.
(c) 500.
(d) 550.
| 
(Q.8)  The value of x as
  shown in figure,is   |  | 
( 1 mark )  | 
(a) 70o.
(b) 820.
(c) 950.
(d) 1300.
(b) 820.
(c) 950.
(d) 1300.
| 
(Q.9)  In the figure
  given below, the value of x will be |  | 
( 1 mark )  | 
(a) 260.
(b) 500.
(c) 540.
(d) 1000.
(b) 500.
(c) 540.
(d) 1000.
| 
(Q.10)  The criterion,
  by which the given triangles are congruent is  |  | 
( 1 mark )  | 
(a) SSS.
(b) SAS.
(c) ASA.
(d) AAS.
(b) SAS.
(c) ASA.
(d) AAS.
| 
(Q.11)  The value of x
  in the following figure is  |  | 
( 1 mark )  | 
(a) 2500.
(b) 1250.
(c) 1100.
(d) 550.
(b) 1250.
(c) 1100.
(d) 550.
| 
(Q.12)  The number of
  sides of a regular polygon whose each exterior anglehas a measure of 1200
  are  |  | 
( 1 mark )  | 
(a) 6.
(b) 5.
(c) 4.
(d) 3.
(b) 5.
(c) 4.
(d) 3.
| 
(Q.13)  The sum of three
  sides of a triangle is  |  | 
( 1 mark )  | 
(a) equal to the sum of its three
altitudes.
(b) equal to the sum of its median.
(c) less than the sum of its median.
(d) greater than the sum of its median.
(b) equal to the sum of its median.
(c) less than the sum of its median.
(d) greater than the sum of its median.
| 
(Q.14)  The point of
  intersection of the perpendicular bisectors of the sides of a triangle is
  called its  |  | 
( 1 mark )  | 
(a) orthocentre.
(b) circumcentre.
(c) centroid.
(d) incentre.
(b) circumcentre.
(c) centroid.
(d) incentre.
| 
(Q.15)  The point of
  intersection of all the three medians of a triangle is called its  |  | 
( 1 mark )  | 
(a) orthocentre.
(b) circumcentre.
(c) centroid.
(d) incentre.
(b) circumcentre.
(c) centroid.
(d) incentre.
| 
(Q.16)  The point of
  intersection of the internal bisectors of the angles of a triangle is called
  its  |  | 
( 1 mark )  | 
(a) orthocentre.
(b) circumcentre.
(c) centroid.
(d) incentre.
(b) circumcentre.
(c) centroid.
(d) incentre.
| 
(Q.17)  The value of x
  in the given figure is  |  | 
( 1 mark )  | 
(a) 1500.
(b) 1300.
(c) 1000.
(d) 850.
(b) 1300.
(c) 1000.
(d) 850.
 
No comments:
Post a Comment